Grammars

‘@ @@@\ This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-
sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA.

4

Outline and Objectives

Outline
* Motivation - Parsing

* Context Free Grammars
— Formal definition
— Terminology
* Generating from a Grammar
* Parse trees and acceptance
— Ambiguity
— Look aheads

Learning Objectives

e Describe parsing
strategies for a context
free grammar.

* Derive a parse tree
given a grammar and
string.

e Generate strings from a
grammatr.

Parsing

while (expression) {
statement;
if (expression) {

statement;
statement;

}
}

Is this code “valid”?

How can we formally represent or describe the
structure of the code or the relationships
between the different statements?

Definition
Context-free grammar can be defined by:

o A finite set of variables that represent
intermediate structures (variables) and
terminals, called V

o A set of rules, R, the relate variables to other
variables and/or terminals

A grammar

o A start variableSe T specifies
structure and

relationships...

Example

Let’s assume we have the following grammar...
V={1}

with the rule
S->{} [{S}]SS

and S=S

Example

What can we derive from
this grammar...

S=>{S}
=>{{}}

To generate a string for
the grammar, start from

S and continue
substituting...

Terminology

Variable — a named intermediary
Terminal — end product

Rule — a structural relationship between one
variable and another.

Yields — application of one rule to a variable

Derives — a chain of rules exists to proceed from
variable to another variable and/or terminal.

Parsing

To check if a given string can generated by a
grammar, we can construct a parse tree ...

Assume the string is {H{ {H{} } ...

{87
7N

AR} sy ey
(/N

‘ FHISIEE
ERRILEE

: ’ >
¢ 3. "/ .’? N
Z 4 J °

Parsing

Revisit opening example...

Assume we have the following grammar...

V =wihile, ;, if, (,), {, }, while_statement,
if statement, expression, statement

S = statement

Parsing

R, the substitution rules, are as follows

statement -> statement; statement |
while_statement | if statement | expression | €

while_statement -> while (expression) { statement }

if statement -> if (expression) { statement }

Parsing

while (expression) {
statement;
if (expression) {
statement;

statement;

Tokenize!

while|(lexpressior|)|{ statemenljif (expression|) { statement;| statement;|} }

Parsing

Next, we know we need to start at the start
symbol, (ie, statement). From there, we scan
across the stream of tokens...

[Place image!]

Recursive Descent

This particular grammar has the advantage that

we can tell by looking at the first token which
rule we should apply!

This peek forward is called a ‘look ahead’. If only
one look ahead is needed the parsing can easily

be handled by a recursive descent parser.
Recursion to the rescue.

Asked and Answered

v'Since we have a parse tree for our snip of
code, we know that it is valid and conforms to
the grammar given.

v"We also know how to formally represent the
structure of the code (through the parse tree).

Programming Language

Now you know why a programming language is
call such ... it is specified by a grammar.

Technically, a programming language is
comprised of all the valid programs that could
be generated by the grammar that specifies it.

References

ASipser M: Introduction to the theory of
computation. 2nd ed. Boston: Thomson
Course Technology; 2006.

(Nisan N and Schocken S: The Elements of
Computing Systems. Cambridge: MIT Press;
2006

