
Grammars

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-

sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,

California, 94041, USA.

Outline and Objectives

Outline

• Motivation - Parsing

• Context Free Grammars

– Formal definition

– Terminology

• Generating from a Grammar

• Parse trees and acceptance

– Ambiguity

– Look aheads

Learning Objectives

• Describe parsing
strategies for a context
free grammar.

• Derive a parse tree
given a grammar and
string.

• Generate strings from a
grammar.

Parsing

Is this code “valid”?

How can we formally represent or describe the
structure of the code or the relationships
between the different statements?

while (expression) {
 statement;
 if (expression) {
 statement;
 statement;
 }
}

Definition

Context-free grammar can be defined by:

o A finite set of variables that represent
intermediate structures (variables) and
terminals, called V

o A set of rules, R, the relate variables to other
variables and/or terminals

o A start variable S ε T
A grammar

specifies
structure and

relationships…

Example

Let’s assume we have the following grammar…

 V = {, }

with the rule

 S -> {} | { S } | SS

and S = S

Example

What can we derive from
this grammar…

S => SS

 => {}{ S }

 => {}{ SS }

 => {}{ {}{} }

S => { S }

 => { {} }

To generate a string for
the grammar, start from

S and continue
substituting…

Terminology

Variable – a named intermediary

Terminal – end product

Rule – a structural relationship between one
variable and another.

Yields – application of one rule to a variable

Derives – a chain of rules exists to proceed from
variable to another variable and/or terminal.

Parsing

To check if a given string can generated by a
grammar, we can construct a parse tree …

Assume the string is {}{ {}{} } …

 {}{ {}{} }

?

Parsing

Revisit opening example…

Assume we have the following grammar…

V = while, ; , if, (,), {, }, while_statement,
if_statement, expression, statement

S = statement

Parsing

R, the substitution rules, are as follows

statement -> statement; statement |
while_statement | if_statement | expression | ε

while_statement -> while (expression) { statement }

if_statement -> if (expression) { statement }

Parsing

while (expression) {
 statement;
 if (expression) {
 statement;
 statement;
 }
}

while (expression) { statement; if (expression) { statement; statement; } }

Tokenize!

Parsing

Next, we know we need to start at the start
symbol, (ie, statement). From there, we scan
across the stream of tokens…

 [Place image!]

Recursive Descent

This particular grammar has the advantage that
we can tell by looking at the first token which
rule we should apply!

This peek forward is called a ‘look ahead’. If only
one look ahead is needed the parsing can easily
be handled by a recursive descent parser.
Recursion to the rescue.

Asked and Answered

Since we have a parse tree for our snip of
code, we know that it is valid and conforms to
the grammar given.

We also know how to formally represent the
structure of the code (through the parse tree).

Programming Language

Now you know why a programming language is
call such … it is specified by a grammar.

Technically, a programming language is
comprised of all the valid programs that could
be generated by the grammar that specifies it.

References

Sipser M: Introduction to the theory of
computation. 2nd ed. Boston: Thomson
Course Technology; 2006.

Nisan N and Schocken S: The Elements of
Computing Systems. Cambridge: MIT Press;
2006

